Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 444
Filtrar
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557493

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatócitos/metabolismo , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Modelos Animais de Doenças
2.
Nanotechnology ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569481

RESUMO

Conductive Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been extensively used as non-metallic electrodes. However, the relatively low electrical conductivity of pristine PEDOT:PSS film restricts its further application. Although doping high content conductive filler or increasing the film thickness are effective for enhancing the electrical property, the transparency is sacrificed, which limits the application of PEDOT:PSS films. In this study, preparing PEDOT:PSS composite film with highly conductive and transparent property was the primary purpose. To achieve this goal, single-walled carbon nanotubes (SWCNTs) and dimethyl sulfoxide (DMSO) was chosen to composite with PEDOT:PSS. The spin-coated SWCNT/PEDOT:PSS composite film exhibited excellent electrical conductivity and transparency. The electrical conductivity of composite film with desired transmittance property (78%) reached the highest value (1060.96 S cm-1) at the SWCNTs content was 6 wt%. Under the modification process applied in this work, the non-conductive PSS was partially removed by incorporated DMSO and SWCNTs. Then, the molecular chains of PEDOT stretched and adsorbed onto the surface of SWCNTs, forming a highly efficient three-dimensional conductive structure, which contributed to the enhancement of electrical conductivity and transparency. Additionally, the spin-coating process allowed for the reduction of film thickness, ensuring better transparency. This research contributed to expanding the further applications of PEDOT:PSS films in high-performance transparent film electrodes. .

4.
Heliyon ; 10(8): e29515, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38638982

RESUMO

Of all malignancies, pancreatic ductal adenocarcinoma (PDAC), constituting 90% of pancreatic cancers, has the worst prognosis. Glycolysis is overactive in PDAC patients and is associated with poor prognosis. Drugs that inhibit glycolysis as well as induce cell death need to be identified. However, glycolysis inhibitors often fail to induce cell death. We here found that FV-429, a derivative of the natural flavonoid wogonin, can induce mitochondrial apoptosis and inhibit glycolysis in PDAC in vivo and in vitro. In vitro, FV-429 inhibited intracellular ATP content, glucose uptake, and lactate generation, consequently leading to mitochondrial dysfunction and apoptosis in PDAC cells. Furthermore, it decreased the expression of PKM2 (a specific form of pyruvate kinase) through the ERK signaling pathway and enhanced PKM2 nuclear translocation. TEPP-46, the activator of PKM2, reversed FV-429-induced glycolysis inhibition and mitochondrial apoptosis in the PDAC cells. In addition, FV-429 exhibited significant tumor suppressor activity and high safety in BxPC-3 cell xenotransplantation models. These results thus demonstrated that FV-429 decreases PKM2 expression through the ERK signaling pathway and enhances PKM2 nuclear translocation, thereby resulting in glycolysis inhibition and mitochondrial apoptosis in PDAC in vitro and in vivo, which makes FV-429 a promising candidate for pancreatic cancer treatment.

5.
Heliyon ; 10(8): e29448, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655317

RESUMO

Background and aim: Solid organ transplantation remains a life-saving therapeutic option for patients with end-stage organ dysfunction. Acute cellular rejection (ACR), dominated by dendritic cells (DCs) and CD4+ T cells, is a major cause of post-transplant mortality. Inhibiting DC maturation and directing the differentiation of CD4+ T cells toward immunosuppression are keys to inhibiting ACR. We propose that oxymatrine (OMT), a quinolizidine alkaloid, either alone or in combination with rapamycin (RAPA), attenuates ACR by inhibiting the mTOR-HIF-1α pathway. Methods: Graft damage was assessed using haematoxylin and eosin staining. Intragraft CD11c+ and CD4+ cell infiltrations were detected using immunohistochemical staining. The proportions of mature DCs, T helper (Th) 1, Th17, and Treg cells in the spleen; donor-specific antibody (DSA) secretion in the serum; mTOR-HIF-1α expression in the grafts; and CD4+ cells and bone marrow-derived DCs (BMDCs) were evaluated using flow cytometry. Results: OMT, either alone or in combination with RAPA, significantly alleviated pathological damage; decreased CD4+ and CD11c+ cell infiltration in cardiac allografts; reduced the proportion of mature DCs, Th1 and Th17 cells; increased the proportion of Tregs in recipient spleens; downregulated DSA production; and inhibited mTOR and HIF-1α expression in the grafts. OMT suppresses mTOR and HIF-1α expression in BMDCs and CD4+ T cells in vitro. Conclusions: Our study suggests that OMT-based therapy can significantly attenuate acute cardiac allograft rejection by inhibiting DC maturation and CD4+ T cell responses. This process may be related to the inhibition of the mTOR-HIF-1α signaling pathway by OMT.

6.
Aging (Albany NY) ; 16(7): 6537-6549, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579170

RESUMO

BACKGROUND: Complex cellular signaling network in the tumor microenvironment (TME) could serve as an indicator for the prognostic classification of hepatocellular carcinoma (HCC) patients. METHODS: Univariate Cox regression analysis was performed to screen prognosis-related TME-related genes (TRGs), based on which HCC samples were clustered by running non-negative matrix factorization (NMF) algorithm. Furthermore, the correlation between different molecular HCC subtypes and immune cell infiltration level was analyzed. Finally, a risk score (RS) model was established by LASSO and Cox regression analyses (CRA) using these TRGs. Functional enrichment analysis was performed using gene set enrichment analysis (GSEA). RESULTS: HCC patients were divided into three molecular subtypes (C1, C2, and C3) based on 704 prognosis-related TRGs. HCC subtype C1 had significantly better OS than C2 and C3. We selected 13 TRGs to construct the RS model. Univariate and multivariate CRA showed that the RS could independently predict patients' prognosis. A nomogram integrating the RS and clinicopathologic features of the patients was further created. We also validated the reliability of the model according to the area under the receiver operating characteristic (ROC) curve value, concordance index (C-index), and decision curve analysis. The current findings demonstrated that the RS was significantly correlated with CD8+ T cells, monocytic lineage, and myeloid dendritic cells. CONCLUSION: This study provided TRGs to help classify patients with HCC and predict their prognoses, contributing to personalized treatments for patients with HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Prognóstico , Biomarcadores Tumorais/genética , Nomogramas , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
7.
Aging (Albany NY) ; 16(7): 6550-6565, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604154

RESUMO

BACKGROUND: The treatment and prognosis of patients with advanced hepatocellular carcinoma (HCC) have been a major medical challenge. Unraveling the landscape of tumor immune infiltrating cells (TIICs) in the immune microenvironment of HCC is of great significance to probe the molecular mechanisms. METHODS: Based on single-cell data of HCC, the cell landscape was revealed from the perspective of TIICs. Special cell subpopulations were determined by the expression levels of marker genes. Differential expression analysis was conducted. The activity of each subpopulation was determined based on the highly expressed genes. CTLA4+ T-cell subpopulations affecting the prognosis of HCC were determined based on survival analysis. A single-cell regulatory network inference and clustering analysis was also performed to determine the transcription factor regulatory networks in the CTLA4+ T cell subpopulations. RESULTS: 10 cell types were identified and NK cells and T cells showed high abundance in tumor tissues. Two NK cells subpopulations were present, FGFBP2+ NK cells, B3GNT7+ NK cells. Four T cells subpopulations were present, LAG3+ T cells, CTLA4+ T cells, RCAN3+ T cells, and HPGDS+ Th2 cells. FGFBP2+ NK cells, and CTLA4+ T cells were the exhaustive subpopulation. High CTLA4+ T cells contributed to poor prognostic outcomes and promoted tumor progression. Finally, a network of transcription factors regulated by NR3C1, STAT1, and STAT3, which were activated, was present in CTLA4+ T cells. CONCLUSION: CTLA4+ T cell subsets in HCC exhibited functional exhaustion characteristics that probably inhibited T cell function through a transcription factor network dominated by NR3C1, STAT1, and STAT3.


Assuntos
Carcinoma Hepatocelular , Células Matadoras Naturais , Neoplasias Hepáticas , Análise de Célula Única , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Microambiente Tumoral/imunologia , Antígeno CTLA-4/metabolismo , Antígeno CTLA-4/genética , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Prognóstico , Regulação Neoplásica da Expressão Gênica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
8.
Int Immunopharmacol ; 133: 112092, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626548

RESUMO

BACKGROUND: Endometrial regenerative cells (ERCs) have been proven to be an effective strategy for attenuating experimental colitis, but the complex in vivo microenvironment such as oxidative stress may largely limit and weaken ERC efficacy. Melatonin (MT) works as an anti-oxidative agent in a variety of preclinical diseases, and has been identified to promote mesenchymal stem cell-mediated therapeutic effects in different diseases. However, the ability of MT to enhance ERC-mediated effects in colitis is currently poorly understood. METHODS: Menstrual blood was collected from healthy female volunteers to obtain ERCs and identified. In vitro, H2O2-induced oxidative stress was introduced to test if MT could prevent ERCs from damage through detection of intracellular reactive oxidative species (ROS) and apoptosis assay. In vivo, dextran sodium sulfate (DSS)-induced acute colitis was treated by ERCs and MT-primed ERCs, therapeutic effects were assayed by the disease activity index (DAI), histological features, and macrophage and CD4+ T cell in the spleen and colon, and cytokine profiles in the sera and colon were also measured. RESULTS: In vitro, ERCs that underwent MT-precondition were found to possess more anti-oxidative potency in comparison to naïve ERCs, which were characterized by decreased apoptosis rate and intracellular ROS under H2O2 stimulation. In vivo, MT pretreatment can significantly enhance the therapeutic effects of ERCs in the attenuation of experimental colitis, including decreased DAI index and damage score. In addition, MT pretreatment was found to promote ERC-mediated inhibition of Th1, Th17, and M1 macrophage and pro-inflammatory cytokines, increase of Treg, and immunomodulation of cytokines in the spleen and colon. CONCLUSIONS: MT pretreatment facilitates the promotion of cell viability under oxidative stress in vitro, while also enhancing ERC-mediated therapeutic effects in experimental colitis.

9.
Cytokine ; 179: 156598, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583255

RESUMO

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.

10.
Adv Sci (Weinh) ; : e2309348, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498682

RESUMO

Tertiary lymphoid structure (TLS) can predict the prognosis and sensitivity of tumors to immune checkpoint inhibitors (ICIs) therapy, whether it can be noninvasively predicted by radiomics in hepatocellular carcinoma with liver transplantation (HCC-LT) has not been explored. In this study, it is found that intra-tumoral TLS abundance is significantly correlated with recurrence-free survival (RFS) and overall survival (OS). Tumor tissues with TLS are characterized by inflammatory signatures and high infiltration of antitumor immune cells, while those without TLS exhibit uncontrolled cell cycle progression and activated mTOR signaling by bulk and single-cell RNA-seq analyses. The regulators involved in mTOR signaling (RHEB and LAMTOR4) and S-phase (RFC2, PSMC2, and ORC5) are highly expressed in HCC with low TLS. In addition, the largest cohort of HCC patients is studied with available radiomics data, and a classifier is built to detect the presence of TLS in a non-invasive manner. The classifier demonstrates remarkable performance in predicting intra-tumoral TLS abundance in both training and test sets, achieving areas under receiver operating characteristic curve (AUCs) of 92.9% and 90.2% respectively. In summary, the absence of intra-tumoral TLS abundance is associated with mTOR signaling activation and uncontrolled cell cycle progression in tumor cells, indicating unfavorable prognosis in HCC-LT.

11.
J Am Chem Soc ; 146(12): 8216-8227, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38486429

RESUMO

Bioorthogonal reactions provide a powerful tool to manipulate biological processes in their native environment. However, the transition-metal catalysts (TMCs) for bioorthogonal catalysis are limited to low atomic utilization and moderate catalytic efficiency, resulting in unsatisfactory performance in a complex physiological environment. Herein, sulfur-doped Fe single-atom catalysts with atomically dispersed and uniform active sites are fabricated to serve as potent bioorthogonal catalysts (denoted as Fe-SA), which provide a powerful tool for in situ manipulation of cellular biological processes. As a proof of concept, the N6-methyladensoine (m6A) methylation in macrophages is selectively regulated by the mannose-modified Fe-SA nanocatalysts (denoted as Fe-SA@Man NCs) for potent cancer immunotherapy. Particularly, the agonist prodrug of m6A writer METTL3/14 complex protein (pro-MPCH) can be activated in situ by tumor-associated macrophage (TAM)-targeting Fe-SA@Man, which can upregulate METTL3/14 complex protein expression and then reprogram TAMs for tumor killing by hypermethylation of m6A modification. Additionally, we find the NCs exhibit an oxidase (OXD)-like activity that further boosts the upregulation of m6A methylation and the polarization of macrophages via producing reactive oxygen species (ROS). Ultimately, the reprogrammed M1 macrophages can elicit immune responses and inhibit tumor proliferation. Our study not only sheds light on the design of single-atom catalysts for potent bioorthogonal catalysis but also provides new insights into the spatiotemporal modulation of m6A RNA methylation for the treatment of various diseases.


Assuntos
Adenosina/análogos & derivados , Imunoterapia , Neoplasias , Humanos , 60697 , Catálise , Metiltransferases
12.
Medicine (Baltimore) ; 103(10): e36907, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457538

RESUMO

BACKGROUND: Prior research has demonstrated a positive association between the composition of gut microbiota and the incidence of pancreatic cancer. Nevertheless, a thorough quantitative and systematic evaluation of the distinct properties of gut microbiota in individuals diagnosed with pancreatic cancer has yet to be conducted. The objective of this study is to examine alterations in the diversity of intestinal microbiota in individuals diagnosed with pancreatic cancer. METHODS: Search for relevant literature published before July 2023 in 4 databases: PubMed, Embase, Web of Science, and Cochrane Library, without any language restrictions. RESULTS: A total of 12 studies were included, including 535 patients with pancreatic cancer and 677 healthy controls. Analysis was conducted on 6 phyla, 16 genera, and 6 species. The study found significant and distinctive changes in the α-diversity of gut microbiota, as well as in the relative abundance of multiple gut bacterial groups at the phylum, genus, and species levels in pancreatic cancer patients. CONCLUSION: Overall, there are certain characteristic changes in the gut microbiota of pancreatic cancer patients. However, further research is warranted to elucidate the specific mechanism of action and the potential for treatment.


Assuntos
Microbioma Gastrointestinal , Neoplasias Pancreáticas , Humanos , Bactérias
13.
Front Pharmacol ; 15: 1360478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434702

RESUMO

Background: Patients diagnosed with early-stage hepatocellular carcinoma (HCC) and diabetes mellitus (DM) are at a higher risk of experiencing complications and facing increased mortality rates. Hence, it is crucial to develop personalized clinical strategies for this particular subgroup upon their admission. The objective of this study is to determine the key prognostic factors in early HCC patients who received liver resection combined with DM and develop a practical personalized model for precise prediction of overall survival in these individuals. Method: A total of 1496 patients diagnosed hepatitis B virus (HBV) - related liver cancer from Beijing You'an Hospital were retrospectively enrolled, spanning from 1 January 2014, to 31 December 2019, and ultimately, 622 eligible patients of hepatocellular carcinoma (HCC) patients with diabetes were included in this present investigation. A multivariate COX regression analysis was conducted to identify prognostic factors that are independent of each other and develop a nomogram. The performance of the nomogram was evaluated using various statistical measures such as the C-index, receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) in both the training and validation groups. Survival rates were estimated using the Kaplan-Meier method. Results: The study included a total of 622 early HCC patients who underwent liver resection combined with DM. Random Forrest model and Multivariate Cox regression analysis revealed that drinking, tumor number, monocyte-to-lymphocyte ratio, white blood cell count and international normalized ratio at admission were identified as independent prognostic factors for early HCC patients who underwent liver resection combined with DM. The nomogram demonstrated good predictive performance in the training and validation cohorts based on the C-index values of 0 .756 and 0 .739 respectively, as well as the area under the curve values for 3-, 5-, and 8-year overall survival (0.797, 0.807, 0.840, and 0.725, 0.791, 0.855). Calibration curves and decision curve analysis indicated high accuracy and net clinical benefit rates. Furthermore, the nomogram successfully stratified enrolled patients into low-risk and high-risk groups based on their risk of overall survival. The difference in overall survival between these two groups was statistically significant in both the training and validation cohorts (p < 0.0001 and p = 0.0064). Conclusion: Our results indicate that the admission characteristics demonstrate a highly effective ability to predict the overall survival of early HCC patients who have undergone liver resection in combination with DM. The developed model has the potential to support healthcare professionals in making more informed initial clinical judgments for this particular subgroup of patients.

14.
Curr Med Chem ; 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38415454

RESUMO

AIMS: To explore tyrosine metabolism-related characteristics in liver hepatocellular carcinoma (LIHC) and to establish a risk signature for the prognostic prediction of LIHC. Novel prognostic signatures contribute to the mining of novel biomarkers, which are essential for the construction of a precision medicine system for LIHC and the improvement of survival. BACKGROUND: Tyrosine metabolism plays a critical role in the initiation and development of LIHC. Based on the tyrosine metabolism-related characteristics in LIHC, this study developed a risk signature to improve the prognostic prediction of patients with LIHC. OBJECTIVE: To investigate the correlation between tyrosine metabolism and progression of LIHC and to develop a tyrosine metabolism-related prognostic model. METHODS: Gene expression and clinicopathological information of LIHC were obtained from The Cancer Genome Atlas (TCGA) database. Distinct subtypes of LIHC were classified by performing consensus cluster analysis on the tyrosine metabolism-related genes. Univariate and Lasso Cox regression were used to develop a RiskScore prognosis model. Kaplan-Meier (KM) survival analysis with log-rank test and area under the curve (AUC) of receiver operating characteristic (ROC) were employed in the prognostic evaluation and prediction validation. Immune infiltration, tyrosine metabolism score, and pathway enrichment were evaluated using single-sample gene set enrichment analysis (ssGSEA). Finally, a nomogram model was developed with the RiskScore and other clinicopathological features. RESULTS: Based on the tyrosine metabolism genes in the TCGA cohort, we identified 3 tyrosine metabolism-related subtypes showing significant prognostic differences. Four candidate genes selected from the common differentially expressed genes (DEGs) between the 3 subtypes were used to develop a RiskScore model, which could effectively divide LIHC patients into high- and lowrisk groups. In both the training and validation sets, high-risk patients tended to have worse overall survival, less active immunotherapy response, higher immune infiltration and clinical grade, and higher oxidative, fatty, and xenobiotic metabolism pathways. Multivariate analysis confirmed that the RiskScore was an independent indicator for the prognosis of LIHC. The results from pan-- cancer analysis also supported that the RiskScore had a strong prognostic performance in other cancers. The nomogram demonstrated that the RiskScore contributed the most to the prediction of LIHC prognosis. CONCLUSION: Our study developed a tyrosine metabolism-related risk model that performed well in survival prediction, showing the potential to serve as an independent prognostic predictor for LIHC treatment.

15.
Opt Express ; 32(3): 4457-4472, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297647

RESUMO

Terahertz spectrum is easily interfered by system noise and water-vapor absorption. In order to obtain high quality spectrum and better prediction accuracy in qualitative and quantitative analysis model, different wavelet basis functions and levels of decompositions are employed to perform denoising processing. In this study, the terahertz spectra of wheat samples are denoised using wavelet transform. The compound evaluation indicators (T) are used for systematically analyzing the quality effect of wavelet transform in terahertz spectrum preprocessing. By comparing the optimal denoising effects of different wavelet families, the wavelets of coiflets and symlets are more suitable for terahertz spectrum denoising processing than the wavelets of fejer-korovkin and daubechies, and the performance of symlets 8 wavelet basis function with 4-level decomposition is the optimum. The results show that the proposed method can select the optimal wavelet basis function and decomposition level of wavelet denoising processing in the field of terahertz spectrum analysis.

16.
ACS Appl Mater Interfaces ; 16(6): 7973-7982, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291594

RESUMO

Security printing is of the utmost importance in the information era. However, the excessive use of inks and paper still faces many economic and environmental issues. Thus, developing erasable inkless security printing materials is a remarkable strategy to save resources, protect the environment, and improve information security. To this endeavor, a photoresponsive lanthanide-polyoxometalate-doped gelatin film with high transparency was developed through the solution casting method. Attenuated total reflection Fourier-transform infrared spectroscopy confirmed the electrostatic and hydrogen bond interactions between gelatin and lanthanide-polyoxometalate. Absorption spectra, luminescent spectra, and digital images indicated that the film displayed reversible photochromism behavior and was accompanied by luminescent switching property upon exposure to UV irradiation and oxygen (in the dark) alternately, which allowed its potential application as a reprintable medium for inkless security printing. The printed information can be erased upon exposure to oxygen in the dark, and the film can be reused for printing again. The film exhibited excellent erasability, reprintability, renewability, and low toxicity. In addition, multiple encryption strategies were designed to improve information security. This work offers an attractive alternative strategy for constructing a reprintable film for inkless security printing in terms of simplifying the preparation process, saving resources, and protecting the environment.

17.
Sci Rep ; 14(1): 1471, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233487

RESUMO

Municipal solid waste (MSW), a carbon-intensive waste stream, may create both instant and indirect impacts onto environmental and climate management. Despite multiple studies made for greenhouse gases (GHGs) emissions of municipal waste, this research aims to achieve a comprehensive assessment for the carbon cycle by exploring evolution of waste composition and temporal-spatial disparities in waste management. Carbon flows embodied in MSW have been estimated across 31 provinces in Mainland China in the period 2000-2018. This improved estimation could be 15-40% smaller than the conventional estimation employing a constant waste composition. Aggregately some 578 ± 117 megatonnes carbon (MtC) were contained in MSW, including 239 ± 60 Mt of fossil carbon and 339 ± 58 Mt of degradable organic carbon. After treatment, 299 ± 66 MtC were possibly deposited in landfills and dumps. 279 ± 51 MtC were released to the atmosphere, creating net GHGs emissions equivalent to1870 ± 334 megatonnes of CO2 (MtCO2e). MSW generation in China nearly doubled during the period, net GHGs emissions increased by 1.8×, whereas fossil carbon grew by a factor of 3.5, mainly propelled by an increasing content of waste plastic in MSW. More rapid growth was witnessed in provinces in southern China than in northern. Distinct spatial-temporal evolution of waste and carbon metabolism was driven by increment, composition, and management effects. In the long run, the increment and composition effects may drop off. Enhanced practices of waste management integrating the circular economy are needed to fully recycle carbon flows, minimize emissions, and manage carbon deposits in aging landfills and dumps.

18.
Waste Manag Res ; : 734242X241227375, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38268141

RESUMO

The recovery of lithium from spent lithium iron phosphate (LiFePO4) batteries is of great significance to prevent resource depletion and environmental pollution. In this study, through active ingredient separation, selective leaching and stepwise chemical precipitation develop a new method for the selective recovery of lithium from spent LiFePO4 batteries by using sodium persulphate (Na2S2O8) to oxidize LiFePO4 to FePO4. The impact of various variables on the efficiency of lithium leaching was investigated. Moreover, a combination of thermodynamic analysis and characterization techniques such as X-ray diffraction and X-ray photoelectron spectroscopy was employed to elucidate the leaching mechanism. It was found that 98.65% of lithium could be selectively leached in just 35 minutes at 60°C with only 0.2 times excess of Na2S2O8. This high leaching efficiency can be attributed to the stability and lack of structural damage during the oxidation leaching process. The proposed process is economically viable and environmentally friendly, thus showing great potential for the large-scale recycling of spent LiFePO4 batteries.

19.
Lancet Infect Dis ; 24(2): 129-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38006892

RESUMO

BACKGROUND: Spread of SARS-CoV-2 led to a global pandemic, and there remains unmet medical needs in the treatment of Omicron infections. VV116, an oral antiviral agent that has potent activity against SARS-CoV-2, was compared with a placebo in this phase 3 study to investigate its efficacy and safety in patients with mild-to-moderate COVID-19. METHODS: This multicentre, double-blind, phase 3, randomised controlled study enrolled adults in hospitals for infectious diseases and tertiary general hospitals in China. Eligible patients were randomly assigned in a 1:1 ratio using permuted block randomisation to receive oral VV116 (0·6 g every 12 h on day 1 and 0·3 g every 12 h on days 2-5) or oral placebo (on the same schedule as VV116) for 5 days. Randomisation stratification factors included SARS-CoV-2 vaccination status and the presence of high-risk factors for progression to severe COVID-19. Inclusion criteria were a positive SARS-CoV-2 test, an initial onset of COVID-19 symptoms 3 days or less before the first study dose, and a score of 2 or more for any target COVID-19-related symptoms in the 24 h before the first dose. Patients who had severe or critical COVID-19 or who had taken any antiviral drugs were excluded from the study. The primary endpoint was the time to clinical symptom resolution for 2 consecutive days. Efficacy analyses were performed on a modified intention-to-treat population, comprising all patients who received at least one dose of VV116 or placebo, tested positive for SARS-CoV-2 nucleic acid, and did not test positive for influenza virus before the first dose. Safety analyses were done on all participants who received at least one dose of VV116 or placebo. This study was registered with ClinicalTrials.gov, NCT05582629, and has been completed. FINDINGS: A total of 1369 patients were randomly assigned to treatment groups and 1347 received either VV116 (n=674) or placebo (n=673). At the interim analysis, VV116 was superior to placebo in reducing the time to sustained clinical symptom resolution among 1229 patients (hazard ratio [HR] 1·21, 95% CI 1·04-1·40; p=0·0023). At the final analysis, a substantial reduction in time to sustained clinical symptom resolution was observed for VV116 compared with placebo among 1296 patients (HR 1·17, 95% CI 1·04-1·33; p=0·0009), consistent with the interim analysis. The incidence of adverse events was similar between groups (242 [35·9%] of 674 patients vs 283 [42·1%] of 673 patients). INTERPRETATION: Among patients with mild-to-moderate COVID-19, VV116 significantly reduced the time to sustained clinical symptom resolution compared with placebo, with no observed safety concerns. FUNDING: Shanghai Vinnerna Biosciences, Shanghai Science and Technology Commission, and the National Key Research and Development Program of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Adenosina , COVID-19 , Adulto , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , China/epidemiologia , Método Duplo-Cego , Adenosina/análogos & derivados
20.
Int J Nanomedicine ; 18: 7505-7521, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38106448

RESUMO

Introduction: Extracellular protein nanoparticles (PNs) and ions perform synergistical functions in the control of transmembrane osmotic pressure (OP) under isotonic conditions. Intravenous injection may disrupt the ion balance and alter PN levels in blood plasma, changing transmembrane OP and damaging vascular endothelial cells. Methods: Na ions were injected into AngII-induced HUVECs to simulate cell injury in vitro, and tail vein infusion of Na ions into hypertensive rats was performed to assess vascular damage. Optical measurements using an intermediate filament (IF) tension probe were conducted to detect indicators related to transmembrane OP. Immunofluorescence, Western blotting and small interfering RNA (siRNA) transfection were employed to investigate inflammasomes and the relationship between Abl2 and inflammation. Results: Electrolyte injections with sodium ions (but not glucose and hydroxyethyl starch) induced the production of ASC and NLRP3 inflammasomes in Ang II-induced HUVECs; this in turn resulted in the disorder of calcium signals, and changes in transmembrane OP and cell permeability. Moreover, injection of Na ions into Ang II-induced HUVECs activated the mechanosensitive protein Abl2, involved in inflammation-induced transmembrane OP changes. A drug combination was identified that could induce OP recovery and block hyperpermeability induced by cytoplasmic inflammatory corpuscles in vivo and in vitro. Conclusion: Changes in extracellular PNs and ions following chemical stimuli (Ang II) participate in the regulation of transmembrane OP. Furthermore, injection of Na ions causes vascular endothelial injury in Ang II-induced cells in vitro and hypertension rats in vivo, suggesting it is not safe for hypertensive patients, and we propose a new drug combination as a solution.


Assuntos
Hipertensão , Inflamassomos , Humanos , Ratos , Animais , Células Endoteliais da Veia Umbilical Humana/metabolismo , Injeções Intravenosas , Pressão Osmótica , Inflamassomos/metabolismo , Angiotensina II/farmacologia , Hipertensão/induzido quimicamente , Inflamação/metabolismo , Sódio/metabolismo , Íons/metabolismo , Combinação de Medicamentos , Pressão Sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...